If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2h^2+4h=63
We move all terms to the left:
2h^2+4h-(63)=0
a = 2; b = 4; c = -63;
Δ = b2-4ac
Δ = 42-4·2·(-63)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{130}}{2*2}=\frac{-4-2\sqrt{130}}{4} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{130}}{2*2}=\frac{-4+2\sqrt{130}}{4} $
| 3x+6=3x+3 | | 18-g=7 | | 7/4=4/t | | k/4+14=16 | | |3x=5|=2x | | y=4-3+19 | | 22+3y-5=12y-11-2y | | 4(b+3)-2b+4=110 | | -200.7=36x | | Y=6.72(2)t | | 6/4=6+x/5 | | Y1(x)=1+2.5x | | 3/(2w)=6/7 | | G(x)=-2/2x+5 | | (2x+8)+(x-24)=180 | | 32+7x=2(1-4x) | | 6c+25c+5c=180 | | 6x-7+5x-3=180 | | 6x+36=57 | | 48/72=x/120 | | 6x-23=25-2x | | 39+19m=100 | | Y=1500(1.074)t | | -3x-5(-3x-9)=-52 | | 5/3w=3/4 | | 4x(4x)–8x=0 | | 8x+25=6x+9 | | t3=t2+100 | | 29=u/2+8 | | 20x=105 | | M/4+m/4=21 | | 2/3(2-3x)-1/4(4x-3)=-2 |